Localizing solutions of the Einstein constraint equations
نویسندگان
چکیده
منابع مشابه
Rough Solutions of the Einstein Constraint Equations
We construct low regularity solutions of the vacuum Einstein constraint equations. In particular, on 3-manifolds we obtain solutions with metrics in Hs loc with s > 3 2 . The theory of maximal asymptotically Euclidean solutions of the constraint equations descends completely the low regularity setting. Moreover, every rough, maximal, asymptotically Euclidean solution can be approximated in an a...
متن کاملConstructing Solutions of the Einstein Constraint Equations
The first step in the building of a spacetime solution of Einstein’s gravitational field equations via the initial value formulation is finding a solution of the Einstein constraint equations. We recall the conformal method for constructing solutions of the constraints and we recall what it tells us about the parameterization of the space of such solutions. One would like to know how to constru...
متن کاملSolutions of the Einstein Constraint Equations with Apparent Horizon Boundaries
We construct asymptotically Euclidean solutions of the vacuum Einstein constraint equations with an apparent horizon boundary condition. Specifically, we give sufficient conditions for the constant mean curvature conformal method to generate such solutions. The method of proof is based on the barrier method used by Isenberg for compact manifolds without boundary, suitably extended to accommodat...
متن کاملSolutions of the Einstein Constraint Equations with Apparent Horizon Boundary
We construct asymptotically Euclidean solutions of the vacuum Einstein constraint equations with apparent horizon boundary condition. Specifically, we give sufficient conditions for the constant mean curvature conformal method to generate such solutions. The method of proof is based on the barrier method introduced by Isenberg for compact manifolds without boundary,suitably extended to accommod...
متن کاملA class of solutions of the vacuum Einstein constraint equations with freely specified mean curvature
We give a sufficient condition, with no restrictions on the mean curvature, under which the conformal method can be used to generate solutions of the vacuum Einstein constraint equations on compact manifolds. The condition requires a so-called global supersolution but does not require a global subsolution. As a consequence, we construct a class of solutions of the vacuum Einstein constraint equ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inventiones mathematicae
سال: 2015
ISSN: 0020-9910,1432-1297
DOI: 10.1007/s00222-015-0642-4